skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Veldman, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseUnderstanding relationships among grass traits, fire, and herbivores may help improve conservation strategies for savannas that are threatened by novel disturbance regimes. Emerging theory, developed in Africa, emphasizes that functional traits of savanna grasses reflect the distinct ways that fire and grazers consume biomass. Specifically, functional trade‐offs related to flammability and palatability predict that highly flammable grass species will be unpalatable, while highly palatable species will impede fire. MethodsWe quantified six culm and leaf traits of 337 native grasses of Texas—a historical savanna region that has been transformed by fire exclusion, megafaunal extinctions, and domestic livestock. ResultsMultivariate analyses of traits revealed three functional strategies. “Grazer grasses” (N = 50) had culms that were short, narrow, and horizontal, and leaves with high width to length (W:L) and low C to N ratios (C:N)—trait values that attract grazers and avoid fire. “Fire grasses” (N = 104) had culms that were tall, thick, and upright, and leaves that were thick, with low W:L, and high C:N—trait values that promote fire and discourage grazers. “Generalist tolerators” and “generalist avoiders” (N = 183) had trait values that were intermediate to the other groups. ConclusionsOur findings confirm that the flammability–palatability trade‐offs that operate in Africa also explain correlated suites of traits in Texas grasses and highlights that the grass flora of Texas bears the signature of Pleistocene megafauna and the influence of fires that predate human arrival. We suggest that grass functional classifications based on fire and grazer traits can improve prescribed fire and livestock management of savannas of Texas and globally. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Uziel, Joe (Ed.)
    Charcoal fragments preserved in soils or sediments are used by scientists to reconstruct fire histories and thereby improve our understanding of past vegetation dynamics and human-plant relationships. Unfortunately, most published methods for charcoal extraction and analysis are incompletely described and are therefore difficult to reproduce. To improve the standardization and replicability of soil charcoal analysis, as well as to facilitate accessibility for non-experts, we developed a detailed, step-by-step protocol to isolate charcoal from soil and to efficiently count and measure charcoal fragments. The extraction phase involves the chemical soaking and wet sieving of soils followed by the collection of macrocharcoal (≥500 μm). The analysis phase is performed semi-automatically using the open-source software ImageJ to count and measure the area, length, and width of fragments from light stereo microscope images by means of threshold segmentation. The protocol yields clean charcoal fragments, a set of charcoal images, and datasets containing total charcoal mass, number of fragments, and morphological measurements (area, length, and width) for each sample. We tested and validated the protocol on 339 soil samples from tropical savannas and forests in eastern lowland Bolivia. We hope that this protocol will be a valuable resource for scientists in a variety of fields who currently study, or wish to study, macroscopic charcoal in soils as a proxy for past fires. 
    more » « less
  3. null (Ed.)
  4. Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long been viewed by scientists and environmental policymakers as early successional plant communities of low conservation value. Challenging this view, emerging research suggests that old-growth grasslands support substantial biodiversity and are slow to recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But despite growing interest in grassland conservation, there has been no global test of whether old-growth grasslands support greater plant species diversity than secondary grasslands (i.e., herbaceous communities that assemble after destruction of old-growth grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found that secondary grasslands supported 37% fewer plant species than old-growth grasslands (log response ratio = −0.46) and that secondary grasslands typically require at least a century, and more often millennia (projected mean 1,400 y), to recover their former richness. Young (<29 y) secondary grasslands were composed of weedy species, and even as their richness increased over decades to centuries, secondary grasslands were still missing characteristic old-growth grassland species (e.g., long-lived perennials). In light of these results, the view that all grasslands are weedy communities, trapped by fire and large herbivores in a state of arrested succession, is untenable. Moving forward, we suggest that ecologists should explicitly consider grassland assembly time and endogenous disturbance regimes in studies of plant community structure and function. We encourage environmental policymakers to prioritize old-growth grassland conservation and work to elevate the status of old-growth grasslands, alongside old-growth forests, in the public consciousness. 
    more » « less
  5. Free, publicly-accessible full text available January 15, 2026
  6. null (Ed.)
  7. Abstract Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research. 
    more » « less